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Abstract

Recommender systems, especially the newly launched
ones, have to deal with the data-sparsity issue, where
little existing rating information is available. Recently,
transfer learning has been proposed to address this prob-
lem by leveraging the knowledge from related recom-
mender systems where rich collaborative data are avail-
able. However, most previous transfer learning mod-
els assume that entity-correspondences across different
systems are given as input, which means that for any
entity (e.g., a user or an item) in a target system, its
corresponding entity in a source system is known. This
assumption can hardly be satisfied in real-world sce-
narios where entity-correspondences across systems are
usually unknown, and the cost of identifying them can
be expensive. For example, it is extremely difficult to
identify whether a user A from Facebook and a user
B from Twitter are the same person. In this paper, we
propose a framework to construct entity correspondence
with limited budget by using active learning to facili-
tate knowledge transfer across recommender systems.
Specifically, for the purpose of maximizing knowledge
transfer, we first iteratively select entities in the target
system based on our proposed criterion to query their
correspondences in the source system. We then plug
the actively constructed entity-correspondence mapping
into a general transferred collaborative-filtering model
to improve recommendation quality. We perform exten-
sive experiments on real world datasets to verify the ef-
fectiveness of our proposed framework for this cross-
system recommendation problem.

Introduction
Collaborative filtering (CF) technologies, especially matrix
factorization methods, have achieved significant success in
the field of recommender systems. CF aims to generate rec-
ommendations for a user by utilizing the observed prefer-
ences of other users whose historical behaviors are corre-
lated with that of the target user. However, CF performs
poorly when little collaborative information is available.
This is referred to as the data sparsity problem, which is a
common challenging problem in many newly launched rec-
ommender systems.
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Recently, transfer learning (Pan and Yang 2010) has been
proposed to address the data-sparsity problem in the target
recommender system by using the data from some related
recommender systems. A common motivation behind trans-
fer learning is that many commercial Web sites often attract
similar users (e.g., Twitter, Facebook, etc.), or provide sim-
ilar product items (e.g., Amazon, eBay, etc.), thus, a source
CF model built with rich collaborative data can be com-
pressed as a prior to assist the training of a more precise CF
model for the target recommender systems (Li, Yang, and
Xue 2009a). This approach is also known as cross-system
collaborative filtering.

Previous transfer-learning approaches to cross-system CF
can be classified into two categories: (1) CF methods with
cross-system entity correspondence, and (2) those without
cross-system entity-correspondence. In the former category,
Mehta and Hofmann (2006) and Pan et al. (2010) proposed
to embed the cross-system entity-correspondences as con-
straints to jointly learn the CF models for the source and
target recommender systems with an aim to improve the
performance of the target CF system. Although these ap-
proaches have shown promising results, they require the ex-
istence of entity correspondence mappings, such as user cor-
respondence or item correspondence, across different sys-
tems. This strong prerequisite is often difficult to satisfy in
most real-world scenarios, as some specific users or items in
one system may be missing in other systems. For example,
user populations of Twitter and Facebook services are some-
times overlapping, but they are not identical, as is the case
with Amazon and eBay. In addition, even though there may
exist potential entity correspondences across different sys-
tems, they may be expensive or time-consuming to be rec-
ognized as users may use different names, or an item may be
named differently in different online commercial systems.

In the second category where no assumption is made on
pre-existing cross-system mappings, researchers have fo-
cused on capturing the group-level behaviors of users. For
example, Li et al. (2009a) proposed a codebook-based-
transfer (CBT) method for cross-domain CF, where entity-
correspondences across systems are not required. The main
assumption of CBT is that specific users or items may be
different across systems, but the groups of them should be-
have similarly. Therefore, CBT aims to first generate a set
of cluster-level user-item rating patterns from the source do-



main, which is referred to as a codebook. The codebook can
be used as a prior for learning the CF model in the target
system. Li et al. (2009b) further proposed a probabilistic
model for cross-domain CF which shares a similar moti-
vation with CBT. However, compared to the approaches in
the former category, which make use of cross-system entity-
correspondences as a bridge, these approaches are less effec-
tive for knowledge transfer across recommender systems.

In this paper, we assume that the cross-system entity-
correspondences are unknown in general, but that these
mappings can be identified with a cost. In particular, we
propose a unified framework to actively construct entity-
correspondence mappings across recommender systems,
and then integrate them into a transfer learning approach
with partial entity-correspondence mappings for the cross-
system CF. The proposed framework consists of two major
components:
• an active learning algorithm to construct entity-

correspondences across systems with a fixed budget,
and

• an extended transfer-learning based CF approach with
partial entity-correspondence mappings for cross-domain
CF.

Notations & Preliminaries
Denote by D a target CF task, which is associated with
an extremely sparse preference matrix X(d) ∈ Rmd×nd ,
where md is the number of users and nd is the number
of items. Each entry x(d)

uv of X(d) corresponds to user u’s
preference on item v. If x(d)

uv 6= 0, it means for user u,
the preference on item v is observed, otherwise unobserved.
Let Id be the set of all observed (u, v) pairs of X(d). The
goal is to predict users’ unobserved preferences based on
a few observed preferences. For rating recommender sys-
tems, preferences are represented by numerical values (e.g.,
[1, 2, ..., 5], one star through five stars). In cross-system CF,
besides D, suppose we have a source CF task S which is
associated with a relatively dense preference matrix X(s) ∈
R

ms×ns , where ms is the number of users and ns is the
number of items. Similarly, let Is be the set of all ob-
served (u, v) pairs of X(s). Furthermore, we assume that the
cross-system entity-correspondences are unknown, but can
be identified with cost. Our goal is to 1) actively construct
entity-correspondences across the source and target systems
with budget, and 2) make use of them for knowledge transfer
from the source task S to the target taskD. In the sequel, we
denote by X∗,i the ith column of the matrix X, and super-
script > the transpose of vector or matrix, and use the words
“domain” and “system” interchangeably.

Maximum-Margin Matrix Factorization
Our active transfer learning framework for CF is based on
Maximum-Margin Matrix Factorization (MMMF) (Srebro,
Rennie, and Jaakkola 2005), which aims to learn a fully ob-
served matrix Y ∈ Rm×n to approximate a target prefer-
ence matrix X ∈ Rm×n by maximizing the predictive mar-
gin and minimizing the trace norm of Y. Specifically, the

objective of MMMF for binary preference predictions is to
minimize

J =
∑

(u,v)∈I

h (yuv · xuv) + λ ‖Y‖Σ , (1)

where I is the set of observed (u, v) pairs of X, h(z) =
(1 − z)+ = max(0, 1 − z) is the Hinge loss, ‖ · ‖Σ de-
notes the trace norm, and λ ≥ 0 is a trade-off parameter.
In binary preference predictions, yuv = +1 denotes that
user u likes the item v, while yuv = −1 denotes dislike.
The objective (1) can be extended to ordinal rating predic-
tions, and solved efficiently (Rennie and Srebro 2005). Sup-
pose xuv ∈ {1, 2, ..., R}, one can use R − 1 thresholds
θ1, θ2, ..., θR−1 to relate the real-valued yuv to the discrete-
valued xuv by requiring

θxuv−1 + 1 ≤ yuv ≤ θxuv − 1,

where θ0 = −∞ and θR = ∞. Furthermore, suppose Y
can be decomposed as Y = U>V, where U ∈ Rk×m and
V ∈ Rk×n. The objective function of MMMF for ordinal
rating predictions can be written as follows,

min
U,V,Θ

J =
∑

(u,v)∈I

R−1∑
r=1

h
(
T r
uv

(
θur −U>∗uV∗v

))
+ λ (‖U‖F + ‖V‖F ) , (2)

where T r
uv = +1 for r ≥ xuv , while T r

uv = −1 for r < xuv ,
and ‖ · ‖F denotes the Frobenius norm. The thresholds Θ =
{θur}’s can be learned together with Ud and Vd from the
data. Note that the thresholds {θur}’s here are user-specific.
Alterative gradient descent methods can be applied to solve
the optimization problem (2).

Active Transfer Learning for Cross-System CF
Overall Framework
In this section, we introduce the overall framework on ac-
tive transfer learning for cross-system CF as described in
Algorithm 1. To begin with, we apply MMMF on the target
collaborative data to learn a CF model. After that, we itera-
tively select K entities based on our proposed entity selec-
tion strategies to query their correspondences in the source
system. We then apply the extended MMMF method in the
transfer learning manner on the source and target collabora-
tive data to learn an updated CF model.

In the following sections, we describe the entity selection
strategies and the extended MMMF for transfer learning in
detail, respectively.

MMMF with Partial Entity Correspondence

Denote by U
(s)
C and V

(s)
C the factor sub-matrices of U(s)

and V(s) for the entities whose indices are in C, respectively.
Similarly, denote by U

(d)
C and V

(d)
C the factor sub-matrices

for the entities whose indices are in C respectively. Here C
denotes the indices of the corresponding entities (can be ei-
ther users or items) between the source and target systems.



Algorithm 1 Active Transfer Learning for Cross-System CF

Input: U(s), V(s), X(d), T , and K.
Output: U(d), and V(d).

Initialize:
Apply (2) on X(d) to generate Θ

(d)
0 , U(d)

0 and V
(d)
0 .

for t = 0 to T − 1 do
Step 1: Set C(s) = ActiveLearn(Θ

(d)
t ,U

(d)
t ,V

(d)
t ,K),

where C(s) is the set of the indices of the selected enti-
ties (either users or items), and |C(s)| = K.
Step 2: Query C(s) in the source system to identify their
corresponding indices C(d).
Step 3: Apply MMMFTL(U(s),V(s),X(d), C(s), C(d))

to update Θ
(d)
t+1, U(d)

t+1, and V
(d)
t+1.

end for
Return: U(d) ← U

(d)
T , V(d) ← V

(d)
T .

The proposed approach with partial entity-correspondences
to cross-system CF can be written as,

min
U,V,Θ

J =
∑

(u,v)∈I

R−1∑
r=1

h
(
T r
uv

(
θur −UT

∗uV∗v
))

+ λ‖U‖F

+λ‖V‖F + λCR
(
U

(d)
C ,V

(d)
C ,U

(s)
C ,V

(s)
C

)
, (3)

where the last term is a regularization term that aims to use
U

(s)
C and V

(s)
C as priors to learn more precise U

(d)
C and

V
(d)
C , which can be expanded to obtain more precise U(d)

and V(d) respectively. The associated λC ≥ 0 is a trade-off
parameter to control the impact of the regularization term.

Intuitively, a simple way to define the regularization term
is to enforce the target factor sub-matrices U(d)

C and V
(d)
C to

be the same as the source factor sub-matrices U(s)
C and V

(s)
C

respectively as follows,

R
(
U

(d)
C ,V

(d)
C ,U

(s)
C ,V

(s)
C

)
=
∥∥∥W(s)

C −W
(d)
C

∥∥∥
F
, (4)

where W
(d)
C = [U

(d)
C V

(d)
C ] and W

(s)
C = [U

(s)
C V

(s)
C ]. This

“identical” assumption is similar to that of Collective Matrix
Factorization (CMF) (Singh and Gordon 2008), and may not
hold in practice. In the sequel, as a baseline, we denote by
MMMFCMF the extended MMMF method by plugging (4)
into (3).

Alternatively, we propose to use the similarities between
entities estimated in the source system as priors to constrain
the similarities between entities in the target system. The
motivation is that if two entities in the source system are
similar to each other, then their correspondences tend to be
similar to each other in the target system as well. Therefore,
we propose the following form of the regularization term,

R
(
U

(d)
C ,V

(d)
C ,U

(s)
C ,V

(s)
C

)
= tr

(
W

(d)
C L

(s)
C W

(d)T
C

)
, (5)

where tr(·) denotes the trace of a matrix, L
(s)
C =[

L
(s)
U 0

0 L
(s)
V

]
, and L

(s)
U = D

(s)
U − A

(s)
U is known as the

Laplacian matrix, where A(s)
U = U

(s)>
C U

(s)
C is the similarity

matrix of the users in the source system, whose indices are in
the set C, and D

(s)
U is a diagonal matrix with diagonal entries

D
(s)
Uii

=
∑

j A
(s)
Uij

. The definition of L(s)
V on items is similar.

Note that a similar regularization term has been proposed
by (Li and Yeung 2009). However, their work is focused on
utilizing relational information for single-domain CF, and
the Laplacian Matrix is constructed by links between enti-
ties instead of entity-similarities in a source domain. In the
sequel, we denote by MMMFTL the proposed MMMF ex-
tension by plugging (5) into (3).

Actively Constructing Entity Correspondences
In this section, we describe a margin-based method for ac-
tively constructing entity correspondences. A common mo-
tivation behind margin-based active learning approaches is
that given a margin-based model, the margin of an exam-
ple denotes certainty to the prediction on the example. The
smaller the margin is for an example, the lower the certainty
is for its prediction.

Margins on User-Item Pairs Suppose that MMMF (2) or
MMMFTL (3) is performed on the collaborative data in the
target system, then given a user u, for each threshold θk,
where k ∈ {1, ..., R − 1}, the margin of a user-item pair
(u, v) can be defined as δ

(d)
k (u, v) = U

(d)T
∗,u V

(d)
∗,v − θk, if y(d)

u,v > k,

δ
(d)
k (u, v) = θk −U

(d)T
∗,u V

(d)
∗,v, if y(d)

u,v ≤ k,
(6)

where y(d)
u,v = x

(d)
u,v if x(d)

u,v is observed; otherwise, y(d)
u,v =

U
(d)T
∗,u V

(d)
∗,v . Based on the above definition, for each user-

item pair (u, v), we have R − 1 margins. Among them, the
margins to the left (lower) and right (upper) boundaries of
the correct interval have the highest importance, which we
denote by δ(d)

L (u, v) and δ(d)
R (u, v), respectively. Similar to

other margin-based active learning methods, we assume that,
for the unobserved user-item pairs {(u, v)}’s, the predictions
of the CF model are correct, and thus we can obtain the “cor-
rect” intervals of the unobserved user-item pairs as well. In-
tuitively, for a pair (u, v), when δ(d)

L (u, v) = δ
(d)
R (u, v), the

confidence of the prediction is the highest. We define a nor-
malized margin of a user-item pair (u, v) as follows,

δ̃(d)(u, v) = 1−

∣∣∣δ(d)
L (u, v)− δ(d)

R (u, v)
∣∣∣

δ
(d)
L (u, v) + δ

(d)
R (u, v)

. (7)

Note that δ̃(d)(u, v) ∈ [0, 1].

Margins on Entities With the margin definition of a user-
item pair in (7), we are now ready to define the margin of an
entity (either a user or an item). For simplicity, in the rest of
the section, we only describe the definition on the margin of
a user, and propose the user selection strategies based on the
definition. The margin of an item can be defined similarly,
and item selection strategies can be designed accordingly
as well. By observing that given a preference matrix X(d)



with md users and nd items, a user u can be represented
by the pairs between the user and each item (i.e., nd pairs
in total). It is reasonable to assume that the margin of the
user u can be decomposed to the margins of the user-item
pairs {(u, vi)}’s. Furthermore, for each user u, ratings on
some items are observed, whose item indices are denoted by
Idu, while the others are unobserved, whose item indices are
denoted by Îdu. Therefore we propose the margin of a user
as follows,

δ(d)
u =η

1

|Idu|
∑
v∈Idu

δ̃(d)(u, v)+(1−η)
1

|Îdu|

∑
v∈Îdũ

δ(d)(u, v), (8)

where the first term can be referred to as the average of the
“true” margins of the user-item pairs with observed ratings,
and the second term can be referred to as the average of the
“predictive” margins of the user-item pairs with unobserved
ratings. The tradeoff parameter η ∈ [0, 1] is to balance the
impact of the two terms to the overall margin of the user. In
this paper, we simply set η = 0.5.

Based on the margin of a user as defined in (8), we pro-
pose two user-selection strategies as follows.
• MGmin: in each iteration, we rank users in ascending or-

der in terms of their corresponding margin {δ(d)
u }’s, and

select the top K users to construct C for query.
This strategy can return the most uncertain users in the
current CF model. However, due to the long-tail problem
in CF (Park and Tuzhilin 2008), many items or users in
the long tail have only few ratings. Thus, the most un-
certain users in the target recommender system tend to
be in the long tail with high probabilities. Furthermore,
since we assume the source and target recommender sys-
tems be similar, if the users are in the long tail in the
target system, then their counterparts tend to be long-tail
users in the source system as well. This implies that the
factor sub-matrices U(s)

C and V
(s)
C to be transferred from

the source system may not be precise, resulting in limited
knowledge transfer through (5). Thus, we propose another
user-selection strategy as follows.

• MGhybrid: in each iteration, we first apply MGmin to se-
lect K1 users, denoted by C1, where K1 < K. After that
for the rest users {ui}’s, we apply the scoring function de-
fined in (9) to rank them in descending order, and select
K−K1 users to construct C2. Finally, we set C = C1∩C2.

∆(d)(ui, Cu) =

∑
uj∈Cu sim(ui, uj)δ

(d)
ui∑

uj∈Cu sim(ui, uj)
, (9)

where sim(ui, uj) =
|Idui
∩Iduj

|
max(|Idui

|,|Iduj
|) is the measure of

correlation between the users ui and uj based on their rat-
ing behaviors. The motivation behind the scoring function
(9) is that we aim to select users who are 1) informative
(with large values of {δ(d)

ui }’s) and thus supposed to be
“active” instead of the long tail; 2) of strong correlation
to the pre-selected most uncertain users in C1 (with large
values of

∑
uj∈Cu sim(ui, uj)) and thus supposed to be

helpful to recommend items for them based on the intrin-
sic assumption in CF.

Experiments
Datasets and Experimental Setting
We evaluate our proposed framework on two datasets: Net-
flix1 and Douban2. The Netflix dataset contains more than
100 million ratings given by more than 480, 000 users on
around 18, 000 movies with ratings in {1, 2, 3, 4, 5}. Douban
is a popular recommendation website in China. It contains
three types of items including movies, books and music with
rating scale [1, 5].

For Netflix dataset, we filter out movies with less than 5
ratings for our experiments. The dataset is partitioned into
two parts with disjoint sets of users, while sharing the whole
set of movies. One part consists of ratings given by 50%
users with 1.2% rating density, which serves as the source
domain. The remaining users are considered as the target
domain with 0.7% rating density. For Douban, we collect a
dataset consisting of 12, 000 users and 100, 000 items with
only movies and books. Users with less than 10 ratings are
discarded. There remain 270, 000 ratings on 3, 500 books,
and 1, 400, 000 ratings on 8, 000 movies, given by 11, 000
users. The density of the ratings on books and movies are
0.6% and 1.5% respectively. We consider movie ratings as
the source domain and book ratings as the target domain. In
this task, all users are shared but items are disjoint. Further-
more, since there are about 6, 000 movies shared by Netflix
and Douban, we extract ratings on the shared movies from
Netflix and Douban respectively, and obtain 490, 000 ratings
given by 120, 000 users from Douban with rating density
0.7%, and 1, 600, 000 ratings given by 10, 000 users from
Netflix with density 2.6%. We consider ratings on Netflix
as the source domain and those on Douban as the target do-
main. In total, we construct three cross-system CF tasks, and
denote by Netflix→Netflix, DoubanMovie→DoubanBook
and Netflix→DoubanMovie, respectively.

In the experiments, we split each target domain data into
a training set of 80% preference entries and a test set of 20%
preference entries, and report the average results of 10 ran-
dom times. The parameters of the model, i.e., the number
of latent factors k and the number of iterations T are tuned
on some hand-out data of Netflix→Netflix, and fixed to all
experiments.3 Here, T = 10, and k=20. For evaluation cri-
terion, we use Root Mean Square Error (RMSE) defined as,

RMSE =

√√√√ ∑
(u,v)∈I

(xuv − x̂uv)2

|I|
,

where xuv and x̂uv are the true and predicted ratings respec-
tively, and |I| is the number of test ratings. The smaller is
the value, the better is the performance.

Overall Comparison Results
In the first experiment, we qualitatively show the effective-
ness of our proposed active transfer learning framework for

1http://www.netflix.com
2http://www.douban.com
3Suppose total budget is ρ which is the total number of cor-

respondences to be constructed, we set the number of correspon-
dences actively constructed in each iteration as K = ρ/T .



Table 1: Overall comparison results on the three datasets in terms of RMSE.

Tasks
Methods

NoTransf (w/o corr.) NoTransf (0.1% corr.) CBT MMMFTL

MF MMMF MF MMMF (w/o corr.) (0.1% corr.) (100% corr.)

Netflix→Netflix 0.8900 0.880 0.9112 0.9103 0.8846 0.8692 0.8527
(± 0.0004) (± 0.0001) (± 0.0002) (± 0.0004) (± 0.0002) (± 0.0003) (± 0.0002)

Movie→Book (Douban) 0.8804 0.8784 0.8876 0.8837 0.8656 0.8292 0.8126
(± 0.0017) (± 0.0002) (± 0.0003) (± 0.0001) (± 0.0002) (± 0.0003) (± 0.0002)

Netflix→DoubanMovie 0.8520 0.8578 0.8643 0.8589 0.8246 0.7740 0.7576
(± 0.0003) (± 0.0002) (± 0.0001) (± 0.0002) (± 0.0002) (± 0.0001) (± 0.0001)

cross-domain CF as compared with the following baselines:
• NoTransf without correspondences: to apply state-of-the-

art CF models on the target domain collaborative data di-
rectly without either active learning or transfer learning.
In this paper, for state-of-the-art CF models, we use low-
rank Matrix Factorization (MF) (Koren, Bell, and Volin-
sky 2009) and MMMF.

• NoTransf with actively constructed correspondences: to
first apply active learning strategy to construct cross-
domain entity-correspondences, and then align the source
and target domain data to generate a unified item-user ma-
trix. Finally, we apply state-of-the-art CF models on the
unified matrix for recommendations.

• CBT: to apply the codebook-based-transfer (CBT)
method on the source and target domain data for recom-
mendations. As introduced in the first section, CBT does
not require any entity-correspondences to be constructed.

• MMMFTL with full correspondences: to apply the pro-
posed MMMFTL on the source and target domain
data with full entity-correspondences for recommenda-
tions. Note that this method which assumes all entity-
correspondences be available can be considered as an up-
per bound of the active transfer learning method.
The overall comparison results on the three cross-domain

tasks are shown in Table 1. For the active learning strate-
gies, we use MGhybrid as proposed in (9). As can be ob-
served from the first group of columns in the table, apply-
ing state-of-the-art CF models on the extremely sparse target
domain data directly is not able to obtain precise recommen-
dation results in terms of RMSE. The results of the second
group of columns in the table suggest that aligning all the
source and target data to a unified item-user matrix and then
performing state-of-the-art CF models on it cannot help to
boost the recommendation performance, but may even hurt
the performance compared to that of applying CF models
on the target domain data only. This is because the align-
ment makes the matrix to be factorized larger but still very
sparse, resulting in a more difficult learning task. From the
table we can also observe that the transfer learning method
CBT performs better than the NoTransf methods. However,
our proposed active transfer learning method MMMFTL

with only 0.1% entity-correspondences achieves much bet-
ter performance than CBT in terms of RMSE. This veri-
fies the conclusion that making use of cross-system entity-
correspondences as a bridge is useful for knowledge trans-
fer across recommender systems. Finally, by considering the

performance of MMMFTL with full entity-correspondences
as the knowledge-transfer upper bound, and the performance
of MMMF as the baseline, our proposed active transfer
learning method can achieve around 70% knowledge trans-
fer ratio on average on the three tasks while only requires
0.1% entity-correspondences to be labeled.

Experiments on Diff. Active Learning Strategies
In the second experiment, we aim to verify the performance
of our proposed active transfer learning framework plug-
ging with different entity selection strategies. Here, we use
MMMFTL as the base transfer learning approach to cross-
domain CF. For entity selection strategies, besides the two
strategies, MGmin and MGhybrid, presented in the model in-
troduction section, we also conduct comparison experiments
on the following strategies.

• Rand: to select entities randomly in the target domain to
query their correspondences in the source domain.

• Many: to select the entities with most historical ratings in
the target domain to query their correspondences in the
source domain.

• Few: to select the entities with fewest historical ratings in
the target domain to query their correspondences in the
source domain.

• MGmax: to select the entities with largest {δ(d)
u }’s as de-

fined in (8) in the target domain to query their correspon-
dences in the source domain.

Figure 1 shows the results of MMMFTL with different en-
tity selection strategies under varying proportions of entity-
correspondences to be labeled. From the figure, we can
observe that the margin-based approaches (i.e., MGmin,
MGmax, and MGhybrid) perform much better than other ap-
proaches based on different criteria. In addition, compared
with MGmin and MGmax, our proposed MGhybrid not only
selects uncertain entities but also selects informative entities
which have strong correlations to the most uncertain entities,
thus performs slightly better.

Experiments on Diff. Cross-domain Regularizers
As mentioned in the model introduction section, the regu-
larization term R(U

(d)
C ,V

(d)
C ,U

(s)
C ,V

(s)
C ) in (3) for cross-

system knowledge transfer can be substituted by differ-
ent forms, e.g., (4) or (5), resulting in different transfer
learning approaches, MMMFCMF or MMMFTL accord-
ingly. Therefore, in the third experiment, we use MGhybrid
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Figure 1: Results on different entity selection strategies under varying proportions of entity-respondences to be labeled.
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Figure 2: Results on different cross-domain regularizers under varying proportions of entity-respondences to be labeled.

as the entity selection strategy, and compare the perfor-
mance of MMMFCMF and MMMFTL in terms of RMSE.
As can be seen from Figure 2, the proposed MMMFTL

outperforms MMMFCMF consistently on the three cross-
system tasks under varying proportions of the labeled entity-
correspondences. This implies that using similarities be-
tween entities from the source domain data as priors is more
safe and useful for knowledge transfer across recommender
systems than using the factor matrices factorized from the
source domain data directly.

Related Work
Besides the works introduced in the first section, there are
several other related works on applying transfer learning
for CF. Pan et al. (2012) developed an approach known as
TIF (Transfer by Integrative Factorization) to integrate the
auxiliary uncertain ratings as constraints into the target ma-
trix factorization problem. Cao et al. (2010) and Zhang et
al. (2010) extended the CMF method to solve multi-domain
CF problems in a multi-task learning manner respectively.

Our work is also related to previous works on active learn-
ing to CF (Shi, Zhao, and Tang 2012; Mello, Aufaure, and
Zimbrao 2010; Rish and Tesauro 2008; Jin and Si 2004;
Boutilier, Zemel, and Marlin 2003), which assumed that the
users are able to provide ratings to every item of the sys-
tem. However, this assumption may not hold in many real-
world scenarios because users may not be familiar with all
items of the system, thus they may fail to provide ratings on
them. Alternatively, we propose to actively construct entity-
correspondence mappings across systems.

Another related research topic is developing a unified
framework for active learning and transfer learning. Most
previous works on this topic are focused on standard clas-
sification tasks (Saha et al. 2011; Rai et al. 2010; Shi, Fan,
and Ren 2008; Chan and Ng 2007). In this paper, our study
on active transfer learning is focused on addressing the data-
sparsity problem in CF, which is different from the previ-
ous tasks on classification or regression. The existing frame-
works on combining active learning and transfer learning
cannot be directly applied to our problem.

Conclusions and Future Work
In this paper, we present a novel framework on active trans-
fer learning for cross-system recommendations. In the pro-
posed framework, we 1) extend previous transfer learning
approaches to CF in a partial entity-corresponding man-
ner, and 2) propose several entity selection strategies to
actively construct entity-correspondences across different
recommender systems. Our experimental results show that
compared with the transfer learning method which requires
full entity-correspondences, our proposed framework can
achieve 70% knowledge-transfer ratio, while only requires
0.1% of the entities to have correspondence. For future
work, we are planning to apply the proposed framework to
other applications, such as cross-system link prediction in
social networks.
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